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Abstract. A smart grid is a complex system using power transmission
and distribution networks to connect electric power generators to con-
sumers across a large geographical area. Due to their heavy dependencies
on information and communication technologies, smart grid applications,
such as state estimation, are vulnerable to various cyber-attacks. False
data injection attacks (FDIA), considered as the most severe threats for
state estimation, can bypass conventional bad data detection mechanisms
and render a significant threat to smart grids. In this paper, we propose
a novel FDIA detection mechanism based on a wide and recurrent neural
networks (RNN) model to address the above concerns. Simulations over
IEEE 39-bus system indicate that the proposed mechanism can achieve
a satisfactory FDIA detection accuracy.
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1 Introduction

As one of the most critical infrastructures of Internet of Things (IoT), smart
grid, also called smart electrical/power grid, intelligent grid, or futuregrid, is
designed for the next generation power system. Unlike the traditional electrical
grids that send electrical power only in one direction, from a power plant to
consumers, smart grid improves on the electricity network by using bi-direction
flows of electricity and data that provides electrical uses, power interruptions,
and instantaneous feedback on system-wide operations back to power plant and
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regional power grid operators. By utilizing advanced communication and data
processing technologies, smart grids are capable of delivering power in more
efficient ways and responding to wide-ranging conditions and events. However,
the heavy dependence on communication technology and big data highlights
the potential vulnerabilities of smart grids to various cyber attacks. Although
many communication standards, official guidelines, regulatory laws have been
published as countermeasures such as IEC 61850-90-5 and the NISTIR 7628
Guideline [7,11], cyber attack issues still remain in smart grids.

False data injection attacks (FDIA), as a typical type of cyber attacks pro-
posed by Liu et al. [20], has been recently identified as one of the most critical
malicious behaviours against state estimation in smart grids. In such attacks,
the goal of the attackers is to circumvent the conventional bad data detection
system and either compromise the communication infrastructures [32] or attack
the measurement devices through manipulating system variable measurements.
Without effective and robust detection systems, attackers may stealthily launch
FDIA multiple times and render a significant threat to smart grids [5].

Therefore, this paper investigates a novel deep learning approach to detect
well-constructed FDIA that are not detectable by conventional bad data detec-
tion systems in smart grids. In particular, we proposed a wide and recurrent
neural networks (RNN) model to learn the state variable measurement data and
identify the FDIA. Our wide and RNN model consists of a wide component with
a fully connected layer of neural networks and an RNN component with two
LSTM layers. Essentially, the wide component can learn the global knowledge
and the RNN component can capture the sequential correlations among state
variable measurement data. This model integrates the advantages of the wide
component and the RNN component resulting in a satisfactory performance in
the detection of FDIA. The major research contributions of the paper can be
summarized as follows:

– We propose a wide and RNN model to detect FDIA in smart grids. To the
best of our knowledge, this paper is among the pioneer studies of using wide
and RNN model in FDIA detection research.

– Our model combine the power of memorization of the global knowledge
brought by the wide component and generalization of the new temporal
knowledge brought by the RNN model.

– We assess the proposed FDIA detection mechanism with existing FDIA pat-
terns on IEEE 39-bus power system test case. The simulation results demon-
strate a satisfactory FDIA detection accuracy.

The rest of the paper is organized as follows: Sect. 2 presents an overview on
related literature. Our system model is introduced in Sect. 3. Section 4 presents
the wide and RNN model for FDIA detection. We then give the simulation
settings and results in Sect. 5. Finally, we conclude the paper in Sect. 6.
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2 Related Work

A wide range of research focus on the security challenges in smart grids. In this
section, we briefly cover two research directions that are mostly related to our
work. We first present the existing works for the construction of FDIA. Then, we
provide an overview of FDIA detection mechanisms proposed in the literature.

2.1 FDIA in Smart Grids

FDIAs in smart grids were first introduced in 2009 [20] and expanded in [21].
Following these initial work, many researchers tried to investigate more realistic
and effective attacks against the state estimation in smart grids. Kosut et al.
[14] proposed two regimes of FDIA based on the number of meters that the
adversaries can access. In [35], the authors introduced a special type of FDIA
focusing on load redistribution (LR) and analyzed the damage to smart grid
operation in different time steps with different prior attacking knowledge. An
energy deceiving attack proposed by Lin et al. [17] was another type of FDIA that
aims to affect the distributed energy routing process. Kim et al. [13] characterized
the FDIA problem into a series of linear programs. Moreover, a comprehensive
review of the state of the art FDIA methods against modern smart grid systems
were presented by Liang et al. [15].

2.2 Detection Mechanisms Against FDIA

At the same time, much research effort has been devoted to devising mecha-
nisms against FDIA using various techniques. Some researchers solved the FDIA
detection problem by using different optimization methods. For instance, in [19],
according to the sparsity of malicious attacks, the authors formulated the FDIA
detection as a sparse matrix optimization problem and solved it by using nuclear
norm minimization and low rank matrix factorization methods. Instead of the
complex optimization computing, threshold-based comparisons were more com-
monly utilized to identify the FDIA. The authors of [23] employed the Kalman
filter and the Euclidean detector with a selected threshold to detect FDIA in
the IEEE 9-bus system. Similarly, by comparing a residual signals with a pre-
defined threshold, a resilient attack detection estimator was proposed in [8] to
detect the FDIA in a networked cyber-physical system. However, an increasing
number of FDIA can bypass these threshold-based detectors. To combat this
challenge, learning-based methods have been utilized to detect FDIA [26]. In
[6], the authors proposed a FDIA detector by utilizing the principle component
analysis and support vector machine (SVM). In [9], Conditional Deep Belief Net-
work (CDBN) was proposed to reveal attack features, which was then exploited
to detect the FDIA on real-time measurements. Motivated by the strengths of
these learning-based methods, we propose a FDIA detection mechanism based
on a novel wide and recurrent neural network (RNN) model in this paper.
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3 System Model

FDIA is considered as one of the most severe malicious behaviours rendering a
significant threat to the grid [5]. Well-constructed FDIA can effectively circum-
vent the conventional residual-based bad data detection mechanism in direct
current (DC) state estimation. In this section, we briefly present the state esti-
mation method that is widely employed in power utilities [34], the conventional
residual-based bad data detection mechanism [4], and the general patterns of
successful FDIA in smart grids.

3.1 State Estimation

State estimation was first proposed by Schweppe and Wilde in 1970 [29–31]
as a weighted least-squares (WLS) problem. The goal of state estimation is to
estimate the smart grid’s operating conditions by using real-time data collected
from the measurement units [27]. Typical measurements include bus voltage,
active and reactive power injections at each bus, and complex power flows on
branches. Based on the DC power flow model, we can construct the relationship
between system states x and measurements z as a linear model as follows:

z = Hx + e, (1)

where x ∈ R
D contains the voltage amplitude and voltage phase angle at the

buses, z ∈ R
N is the vector of measurements, H ∈ R

N×D is a Jacobian topolog-
ical matrix that maps the system states to the measurements, e is the measure-
ment error (additive noise) vector that is commonly modeled by the Gaussian
distribution, i.e., N ∼ (0N×1,W−1) where W ≡ diag{R−1} with diagonal ele-
ments proportional to variance of each measurement noise. State estimation aims
to find an estimated state x̂ that fits the measurement z the best and minimizes
the WLS error [27] defined as follows:

x̂ = argx min(z − Hx)TW(z − Hx). (2)

In particular, (2) can be solved by using iterative approximation methods such
as the Newton-Raphson method [2].

3.2 Conventional Bad Data Detection

In smart grid systems, in order to solve the problem of potential malicious attacks
and the sampling error of measurement units, a residual-based bad data detection
mechanism was employed to protect state estimations [24]. Given the measure-
ments z, the estimated state vector x̂ can be computed as follows:

x̂ = (HTWH)−1HTWz = Yz, (3)

where Y = H(HTWH)−1HTW. Therefore, the residue vector r = z − ẑ with
threshold γ being calculated using the difference between the observed measure-
ments z and the measurements inferred by the estimated system state ẑ = Hx̂
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for DC power flow model. If ‖r‖2 > γ, the estimated state is considered being
compromised by bad data; otherwise, the estimated state is trustworthy. Accord-
ing to the threshold test proposed in [33], the value of γ is typically determined
by the hypothesis test Pr{‖r‖22 >= γ2} = α, where α is the confidence level.

3.3 False Data Injection Attacks

FDIA have been recently identified as a critical malicious data attacks in a smart
grid system [14,21,35]. The objective for performing FDIA is to mislead the
system operator to treat a compromised state vector x̂comp = x̂+c as the normal
estimated system state, where c ∈ R

n is a non-zero vector. To achieve this, the
potential attackers aim to change the received measurements to za = z + a at
the control center, where a ∈ R

m is the injected attack vector which can be
constructed as

a = H(x̂ + c) − Hx̂. (4)

In order to bypass the bad data detector, the Euclidean norm of the residual ra
needs to keep unchanged

‖ra‖2 =‖za − Hx̂‖2
=

∥
∥z + a − H(x̂ + c)

∥
∥
2

=‖z − ẑ‖2
=‖r‖2 ,

(5)

and the detailed injected attack vector construction is discussed in [28]. There-
fore, the conventional residual-based bad data detection mechanism in DC state
estimation might fail to detect FDIA that are well-constructed by adversaries
who have prior knowledge of the gird including network topology H and esti-
mated states x̂.

4 Proposed Wide and Recurrent Neural Networks for
FDIA Detection

In the previous sections, we have shown that well-constructed FDIA can effec-
tively bypass conventional bad data detection mechanisms and render a signifi-
cant threat to smart grids. In this section, we propose a novel FDIA detection
mechanism in DC power flow model based on the wide and deep learning frame-
work [3].

In our approach, we feed the measurements z into the wide and RNN model
consisting of the wide component and the RNN component. We explain them in
details as follows.

4.1 Wide Component

The wide component is a fully connected layer of neural networks that is used to
learn the global knowledge from the input data with a generalized linear model
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of the form y = wTx+b, where y is the output; x = [x1, x2, ..., xd] is the vector
of d features; w = [w1, w2, ..., wd] are the model parameters, and b is the bias.
Motivated by the previous study [3,16], in the context of FDIA detection, we
choose the wide component to learn the frequent co-occurrence of features by
memorizing the estimated state estimation data x̂.

To be specific, every neuron in the wide component calculates the prediction
score according to the following equation:

yj =
n∑

i=1

wi,j x̂i + b, (6)

where yj is the output in the jth neuron of the fully connected layer, n is the
number of the input data x̂, wi,j stands for the neuron weight between the ith
input value and the jth neuron of the fully connected layer, and b is the bias.
Within each neuron, the activation is given as follows:

aj = f(yj) =

{

0 if yj ≤ 0
yj otherwise.

(7)

where aj is the output of the activation calculation and f(·) stands for the
rectifier linear units (ReLUs) which can effectively prevent overfitting. During
the process of backpropagation, the neural network updates the neuron weights
wi,j iteratively based on the loss value sent back from the loss function.

4.2 RNN Component

In our approach, we set the RNN component as a many-to-one RNN model
that makes use of sequential information x(1), ..., x(t) to predict the output. The
mathematical model of the RNN is as follows:

ht = f(ht−1,xt), (8)

where ht and ht−1 represent the current and previous hidden states, respectively;
f stands for a nonlinear function, and xt refers to the feature observed at time
step t. The constructed RNN mode is composed of two LSTM layers with five
LSTM cells each. Each LSTM cell consists of three gates which are forget gate
ft, input layer it, and output gate ot [10]. The information flow of LSTM cell is
modeled as follows:

ft = σ(Wf · [ht−1, xt] + bf ), (9)
it = σ(Wi · [ht−1, xt] + bi), (10)

C̃t = tanh(Wc · [ht−1, xt] + bc), (11)

Ct = ft ◦ Ct−1 + it ◦ C̃t, (12)
ot = σ(Wo[ht−1, xt] + b0), (13)
ht = ot ◦ tanh(Ct), (14)
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where xt is the input vector; ht−1 is the previous cell output; Ct−1 is the previous
cell memory; ht is the current cell output; Ct is the current cell memory, σ(·)
and tanh(·) stand for the sigmoid function and the hyperbolic tangent function
respectively, and ◦ denotes the element-wise product; Wf ,Wc,Wi and Wo rep-
resent the weight vectors for forget gate f , candidate c, input gate i, and output
gate o, respectively.

After constructing the wide component and the RNN component, we combine
them using a weighted sum of their output as hidden features and fed them to a
logistic loss function for joint training and prediction. Motivated by the original
approach of the wide and deep learning model [3,36], we use backpropagation
to train our network. In particular, we set our prediction model as:

P (Y = 1|x) = δ(W[xwide,xRNN ] + b), (15)

where Y is the binary label which represents that whether there is a FDIA or
not in the input data; δ(·) is the sigmoid function; W is the joint weights of the
combined part of the network; xwide and xRNN stand for the features of the
wide component and the RNN component, respectively, and b is the bias.

5 Case Study on IEEE 39-Bus System

In this section, we assess the performance of our proposed FDIA detection mech-
anism on IEEE 39-bus system, which is shown in Fig. 1, and compare results with
those of other existing methods.

Fig. 1. IEEE 39-Bus system case [1]



342 Y. Wang et al.

5.1 Simulation Settings

The amount of data is critical to the results of neural networks. In this paper,
we use DIgSILENT Power System Software [25] to conduct a simulation for
generating 150,000 samples. Besides the above normal operational samples, we
constructs another 50,000 FDIA samples based on the existing FDIA mechanism
introduced in Sect. 3.3 that ensure they can bypass the conventional residual-
based bad data detection. The configuration of the test system can be obtained
from MATPOWER toolbox [37] including the network topology matrix H. For
cross validation, according to the common practice [12], the total 200,000 samples
are randomly divided into training data, validation data, and testing data by
6:2:2 ratio. All simulations are conducted on the computer with an Intel Core
i7-9700K CPU, an Nvidia RTX 2080 Ti GPU, 64-GB RAM, and 1000 watt
power supply. The proposed wide and RNN model is constructed and trained
using Tensorflow.

5.2 FDIA Detection Performance Evaluation

In this paper, we use statistical performance matrix to evaluate the proposed
FDIA detection mechanism and other existing works. We label a power flow
measurement with FDIA as positive class and a normal measurement as negative
class. As shown in Table 1, the four measurement instances that we used are
defined as follows: True Positive (TP) is an outcome that correctly predicts the
positive class, True Negative (TN) is an outcome that correctly predicts the
negative class, False Positive (FP) is an outcome that incorrectly predicts the
positive class, and False Negative (FN) is an outcome that incorrectly predicts
the negative class.

Table 1. Definition of performance measurements

Classified as FDIA Classified as No attack

FDIA TP FN

No attack FP TN

We first calculate the prediction accuracy which is the proportion of correct
results, either true positive or true negative, in a population for individual wide
neural networks, individual recurrent neural networks, and the wide and RNN
model we proposed. According to the simulation results in Table 2, the proposed
wide and RNN mechanism can develop a satisfactory DC FDIA detection accu-
racy which is higher than those of the individual wide model and individual RNN
model. Meanwhile, the FP rate and the FN rate of the wide and RNN model
are lower than that of the individual ones.

Furthermore, for a complete comparison, we also present the simulation
results of the three other DC FDIA detection mechanisms proposed in [6,18,22].
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The individual detection accuracy of all the selected detection mechanisms is
presented in Table 3. It can be observed that the proposed FDIA detection mech-
anism can remarkably outperform the previous work. In particular, the detection
accuracy is improved from around 70% by [22] to more than 95%.

Table 2. FDIA detection performance of the proposed mechanism

Wide RNN Wide and RNN

Training cases TP+TN 75.31% (112,965) 92.68% (139,020) 95.39% (143,085)

FP 14.65% (21,975) 4.85% (7275) 3.75% (5623)

FN 12.98% (19,476) 4.49% (6735) 3.37% (5048)

Testing cases TP+TN 75.13% (37,565) 92.58% (46,290) 95.23% (47,615)

FP 14.78% (7390) 4.92% (2460) 3.78% (1892)

FN 13.18% (6588) 4.53% (2265) 3.45% (1724)

Table 3. Comparisons of FDIA detection performance

Mechanism Accuracy

Euclidean detector [22] 72.68%

Sparse Optimization [18] 86.79%

SVM-based [6] 90.06%

Proposed Wide and RNN 95.23%

6 Conclusion

In this paper, we propose a wide and RNN model to detect FDIA in smart grids.
In particular, our wide and RNN model consists of the wide component and the
RNN component, which takes advantage of memorization of the global knowl-
edge of the input measurements and generalization of the temporal correlation
between the measurements at successive time instants. We conduct extensive
simulations on IEEE 39-bus system demonstrating the effectiveness and correct-
ness of the proposed mechanism. For future research, we will consider making
our FDIA detector adaptive to alternating current (AC) state estimation.
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